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The paper presents exact particular solutions of the equations of
transonic gas flows, analogous to the solutions derived in [13}

for the case of short waves. These solutions are used to construct the
flow around a body in a supersonic sweam with an attached shock,

§1. Let u, v be the components of the velocity
vector in the directions x, y of a rectangular system
of coordinates, a the speed of sound, t the time, Py,
Px, ax the critical parameters of the flow, ! a charac-
teristic length, and € a small parameter. We introduce
the following notation:

" U v 14 z
==, =&k —, S =X
ay %+ Ay ® 4 [
Y 2 _ Pa =1 —
auty, ey, af= Py ! T 2t by = ed,

The equations of unsteady transonic flow [4, 5] are then

U

oU v au av
S Umtaw=0 4% _ 0. @1

We shall seek particular solutions of (1.1) in the form
U=¢@0Y +0:,@ 1Y +9(g 7
V=g, 0 Y +9: (0, D Y +491 (¢, DY +0 (g, 7)

X=qY? -9 (¢, ) Y+ % (9.

Substituting (1.2) into (1.1), we obtain a system of
first-order partial differential equations for the
functions @, @1, @g, ¥, ¥,, ¥, , X1, X9, Where the
subscripts denote differentiation:

(g — parameter). (1.2)

Par — PaP2; — 2q'P3, + 3¢5 = 0,
Prc - Packig — Pag¥iz — PrPeq — PoPag +
+ 242 + 3sXag — 2haq ¢ — K1z =0,
Por - Pr=Krq + Pac¥oy — Pig¥az — PagXor — P2qPo —
— P1%10 — P2Pog + P+ 2PeYag + 3WsXo, —
= 2q%1, — Yuby, = 0,
PoXiq + Pazdog — Pog¥as — Prydor — PoPrg — PaPoy + (1. 3)
+ s Pr + 2%2%0q — 290, — YaPyg = O,
@o:Xoq — Pokor — PoPag 1 P1Xog — XiWPo, = 0,
22 — 2¢Qzq + 3, = 0,
@1+ 20201 — 29Puqg — P2ydXa + Py =2 0,
%@+ 20:%0s — 29%0g — Qugda 1 Pyy == U,
PrXos — PoaXy + Yoy = 0,
Following {1], we reduce the system (1. 3) to the form

Qg - 4q@2 -+ 3Pz — @y, — 4970, = 0, 1.4)

Y1 = Qoq (P2 + 49%) — Q1Y — Pov,
P2 = 2 Qg (P2 + 497) — QX1 — ¢P1 — Y2 @u-,

Yog = PogX1 — PrXoa,
(1.4)

Yag®e + 40 — Xie — 1 — 400 =0, (oonprq)
Vo = P2g¥i + 29P1q — 2@2X1q — P15
Noa®z + 4¢*Xog — Kor — Po—Ya* =0,
Pig = Peg¥s + 2q%0q — 2P2Xoq — PrYag .
The function ¢, are determined from the equation
Pazq — Pagq (P2 + 40°) — Paq (P2 —2¢) — 2¢. = 0 (1. 5)
which has the particular solutions
G =A D Vg +B@ —D(1)q— (),
9 =— ¢+ C (7).

Here C(1) and B(7) are arbitrary functions, and D and
& depend on the choice of B(r). In the steady case A,
B, C = const., and the general solution of (1.5) and
its singular integral are

9, =24 Yq + B — 4Bq — 8B, (1.6)
o =—¢ +C.

Let us assume @y = @agqy + 4, Xog = V> P19 = Poq X
X X1qq = 1. Transformations analogous to those used
in [1] reduce the system (1.4) to the form

o (92 + 46%) + 20 9y + 3g) —p. — 28y, = 0,
Vo (P2 + 49%) + 8¢V — v —p — 2% = 0,
o (@2 + 4q%) + 28 (@2 + ) — 8- =0,

Mo (@2 + 4¢%) + N (Pyq + 129) — . —E, =0,

Yo = § (%og Xa — P1¥Xo1) 49 , (1.7
Po = o @rg (@2 + 40%) — @Ys — 991 — 2 Orx,
V1 = Qoq (P2 + 49%) — 1% — o,
33 = Gaq (2 + 4¢°) — 49®2 — Pue .

To find solutions of the form (1.2), we must integrate
equation (1. 5) and solve consecutively the above four
equations.

§2. In the steady case the general solution of (1.7)

is
_ [ 2@t
b= Cexp(— (2L ay),
_ @ §12
n=exp(—Sq,2+,,q§dq)< 2.1)
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D % Ew exp (S 2’;21;3 dq)dq + Ci],

- — (e +39) 50
p = exp (= )

[Se e (2555 ) +03]

(2. 1)
(Cont'd)

v:exp(— S%-—_f_g—/;(]—qu).

{2
J Pr -t 4g°

exp (S W _8:4(,2 dq)dg + Ca] -

When ¢, = -q2 + C, thenfor ¢ and u identically equal
equal to zero the solutions (2. 1) represent a Prandtl-
Mayer type flow together with a flow of another type.
The transition line—a straight line when v = 0, C =0,
and a curved line when v 2 0—always passes through
the singular point. Thus, the system (2.1) describes
both the subsonic and the supersonic parts of the
flow.

Fory, - 0, ¢ = 0 the functions @), g, ¥;, ¥ are
determined from the equations

Qo = %o’ (P + 4¢%), P, = o’ (@2 + 4¢%),

Vo (P2 + 4¢%) + 8gv—p =0
o (P2 + 4¢%) + 2p (s’ + 39) = 0,
Ys = Yo @ (@2 + 40%) — 4gpal h=(vdq).

When g, = 24 ¥ g+ B —4Bg — 8B?, the general
solution of this system is

po=Clg + B g, 4 4¢* ™

’

v = |q B g, - 4¢P [CI.V—W_B— — 2C1;

Qo =1q + B[ lgp
F4EIRIC, Vg 1+ B — 201 (g, + 460
$io= o Ge@o — O Ly + 4¢° % [q + B
g = — o lgy (P2 + 460 — 2091 .

§3. In terms of the coordinates

t

. r ' i
_ ) Y= —¢" 1=35~
X PIION Gals 21, %

— !
= —
th() (‘quations Of axiS_V mmetri(_‘ flOVV are [5]

al’ .ol v \4 v U
T Vet e Ty =0ty =061

These equations have a class of exact particular
solutions of the form

U (g, O Y2+ [(9,v-+udg X=qY24{vdg

, (3.2)
V= (g, T) Y34 2Y [ {—@,v + ¢9, v + quidg,

where the functions ¢,, v, p are determined by the
equations

Ve — v, (@2 + 4¢3 —8gv +pu = 0,

B, — I (@, + 4¢") — 1 (20, + 49) =0,
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Qg — Pugq (P, + 40°) — @, (@,, —49) — 49, =0,
by = — o (B, — By, (P2 + 41,
Y, = — Ya [9,, — By, (@, + 4¢%) + 499,] -

In particular, the class of exact solutions (3. 2)
includes the solution

U = —5g?¥? + Cog'ht hiCog ™,
X = g¥* — ¥, Cig = ¥Cag 0+ Cs
V = — 4g?Y® 4 CoghY — 2/Cog'hY,
(C1, C;. C3 = const).

§4. Consider a sharp-nosed body in a uniform
supersonic flow. Upstream of the body there will be
a compression shock, across which there must hold
the dynamic compatibility conditions, which in the
transonic approximation are [4]

ax o[ 0X N\
2W+UI+U+2(W) =0,

(4.1)
(U——Ul)g{f—:V——Vl

where X = X(Y, 7) represents the position of the shock,
and U, Vy are the components of the velocity vector
upstream of the shock. We shall consider flows with
an attached shock, represented by the parabola

X = q,Y? - 2DgqY. 4.2)

When the flow is non-steady, then g = qy(7) and
D = Dy(r) are functions of time. We shall construct
the solution by means of the particular solutions (1. 2).
These solutions do not include enough arbitrariness
to enable us to satisfy all boundary conditions at the
shock and at the body surface for arbitrary body
configuration. Therefore we shall construct a solution
compatible with (4.1}, (4.2), and shall take the stream-
line passing through the intersection of the coordinate
axis and the shock as the body contour.

The conditions at the shock (4.1), at which q - q,
impose the following boundary conditions on the func-
tions ¢4, @1, Xp» X; for q =g,

e, + '8%2 =0, 20g— Poq = 0,

],/'j.-(Pz(qu —10¢9, =0, o — PoXsg = 0,
Poq 4X10X1 - 4QXN =0,

WO#UI—XOQ(P‘ZZO’ %“Xlxoqtpz:ﬂ ’

For q, = q(7) the compatibility conditions at the
shock are
dg/dv = — (@2 -+ 4¢%) + /o9y,
dgs [ dt =129, (p,, — 20g),
do /dv =199, — 6gp, — 49X, ,
P, — 9%, =0,
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A9,/ 47 = /2@, (@5 — 41Xy — 4%, »

%=V, —%2=0, ¥, —1%,,=0-

24 v T
-a7,
_M/_
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' {7/
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a7/’ ,,r,’//
a8 1,41 /
a4, I'I ',’/I /'I//
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Let us consider the steady case. From (4. 3) it
follows that if the flow upstream of the shock is uni~
form, then

Py = — 81]0’6’2 ,

&’2 =%my12—11 —8up 4 14y,

Thus, a flow with a parabolic shock has the form
U=-—8g2, Y*'— 1640’%2 Y -+ po— 8¢¢*D%ps,
X = qopY? + 2Dqo¥ p —
1 il
~ Ty S 9u(2Ps — P dp + qopD* — g D%,
1

V="g2(¢, (26, —p")+pd, |(¥ +Dp— &Y

— 80 (Y + D) (— s @y, —P)®,+ U, (26, — p*% X

% 112 —11p) ™ + 2[5 (12 — 1 p) ]} + 32¢°D7Y,
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Qo = — 1/11U1112~“P|l/' (2&’2 —

— Py BYIZ—1ip 4 8). (4. 4)
(cont'd)
The arbitrary constants C, D are determined from
the given velocity U; and the angle of the shock at the
point Y = 0. From (4.1) and (4.4) we get

U
c=2,

1 dX

D=snav-

Here q, is a free parameter, which can be chosen so
that the transition line will pass through the point

X =1, Y = 0. The figure represents the flow for the
case U; = 2,16, dX/dY = 1. The dashed lines are lines
of equal velocities and pressures, the solid line is the
shock. The profile of the body in this case is close to
the profile of a wedge with strong curvature of the
walls near the transition line.
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